Book Review: The World Beyond Your Head

I wrote a version of this for the newsletter last year and decided to expand it out into a post. I’ve also added in a few thoughts based on an email conversation about the book with David MacIver a while back, and a few more thoughts inspired by a more recent post.

This wasn’t a book I’d been planning to read. In fact, I’d never even heard of it. I was just working in the library one day, and the cover caught my attention. It’s been given the subtitle ‘How To Flourish in an Age of Distraction’, and it looks like the publisher has tried to sell it as a sort of book-length version of one of those hand-wringers in The Atlantic about how we all gawp at our phones too much. I’m a sucker for those. This is a bit pathetic, I know, but there are certain repetitive journalist topics that I like simply because they’re repetitive, and the repetition has given them a comfortingly familiar texture, and ‘we all gawp at our phones too much’ is one of them. So I had a flick through.

The actual contents turned out to be less comfortingly familiar, but a lot more interesting. Actually, I recognised a lot of it! Merleau-Ponty on perception… Polanyi on tacit knowledge… lots of references to embodied cognition. This looks like my part of the internet! I hadn’t seen this set of ideas collected together in a pop book before, so I thought I’d better read it.

The author, Matthew Crawford, previously wrote a book called Shop Class As Soul Craft, on the advantages of working in the skilled trades. In this one he zooms out further to take a more philosophical look at why working with your hands with real objects is so satisfying. There’s a lot of good stuff in the book, which I’ll get to in a minute.  I still struggled to warm to it, though, despite it being full of topics I’m really interested in. Some of this was just a tone thing. He writes in a style I’ve seen before and don’t get on with – I’m not American and can’t place it very exactly, but I think it’s something like ‘mild social conservatism repackaged for the educated coastal elite’. According to Wikipedia he writes for something called The New Atlantis, which may be of the places this style comes from. I don’t know. There’s also a more generic ‘get off my lawn’ thing going on, where we are treated to lots of anecdotes about how the airport is too loud and there’s too much advertising and children’s TV is terrible and he can’t change the music in the gym.

The oddest thing for me was his choice of pronouns for the various example characters he makes up throughout the book to illustrate his points. This is always a pain because every option seems to annoy someone, but using ‘he’ consistently would at least have fitted the grumpy old man image quite well. Maybe his editor told him not to do that, though, or maybe he has some kind of point to make, because what he actually decided to do was use a mix of ‘he’ and ‘she’, but only ever pick the pronoun that fits traditional expectations of what gender the character would be. Because he mostly talks about traditionally masculine occupations, this means that maybe 80% of the characters, and almost all of the sympathetic ones, are male – all the hockey players, carpenters, short-order cooks and motorcycle mechanics he’s using to demonstrate skilled interaction with the environment. The only female characters I remember are a gambling addict, a New Age self-help bore, a disapproving old lady, and one musician who actually gets to embody the positive qualities he’s interested in. It’s just weird, and I found it very distracting.

OK, that’s all my whining about tone done. I have some more substantive criticisms later, but first I want to talk about some of the things I actually liked. Underneath all the owning-the-libs surface posturing he’s making a subtle and compelling argument. Unpacking this argument is quite a delicate business, and I kind of understand why the publishers just rounded it off to the gawping at phones thing.

Violins and slot machines

Earlier, I said that Crawford is out to explain ‘why working with your hands with real objects is so satisfying’, but actually he’s going for something a little more nuanced and specific than that. Not all real objects are satisfying to work with. Here’s his discussion of one that isn’t, at least for an adult:

When my oldest daughter was a toddler, we had a Leap Frog Learning Table in the house. Each side of the square table presents some sort of electromechanical enticement. There are four bulbous piano keys; a violin-looking thing that is played by moving a slide rigidly located on a track; a transparent cylinder full of beads mounted on an axle such that any attempt, no matter how oblique, makes it rotate; and a booklike thing with two thick plastic pages in it.

… Turning off the Leap Frog Learning Table would produce rage and hysterics in my daughter… the device seemed to provide not just stimulation but the experience of agency (of a sort). By hitting buttons, the toddler can reliably make something happen.

The Leap Frog Learning Table is designed to take very complicated data from the environment – toddlers bashing the thing any old how, at any old speed or angle – and funnel this mess into a very small number of possible outcomes. The ‘violin-looking thing’ has only one translational degree of freedom, along a single track. Similarly, the cylinder can only be rotated around one axis. So the toddler’s glancing swipe at the cylinder is not dissipated into uselessness, but instead produces a satisfying rolling motion – they get to ‘make something happen’.

This is extremely satisfying for a toddler, who struggles to manipulate the more resistant objects of the adult world. But there is very little opportunity for growth or mastery there. The toddler has already mastered the toy to almost its full extent. Hitting the cylinder more accurately might make it spin for a bit longer, but it’s still pretty much the same motion.

At the opposite end of the spectrum would be a real violin. I play the violin, and you could describe it quite well as a machine for amplifying tiny changes in arm and hand movements into very different sounds (mostly horrible ones, which is why beginners sound so awful). There are a large number of degrees of freedom – the movements of the each jointed finger in three dimensional space, including those on the bow hand, contribute to the final sound. Also, almost all of them are continuous degrees of freedom. There are no keys or frets to accommodate small mistakes in positioning.

Crawford argues that although tools and instruments that transmit this kind of rich information about the world can be very frustrating in the short term, they also have enormous potential for satisfaction in the long term as you come to master them. Whereas objects like the Leap Frog Learning Table have comparatively little to offer if you’re not two years old:

Variations in how you hit the button on a Leap Frog Learning Table or a slot machine do not similarly produce variations in the effect you produce. There is a closed loop between your action and the effect that you perceive, but the bandwidth of variability has been collapsed… You are neither learning something about the world, as the blind man does with his cane, nor acquiring something that could properly be called a skill. Rather, you are acting within the perception-action circuits encoded in the narrow affordances of the game, learned in a few trials. This is a kind of autistic pseudo-action, based on exact repetition, and the feeling of efficacy that it offers evidently holds great appeal.

(As a warning, Crawford consistently uses ‘autistic’ in this derogatory sense throughout the book; if that sounds unpleasant, steer clear.)

Objects can also be actively deceptive, rather than just tediously simple. In the same chapter there’s some interesting material on gambling machines, and the tricks used to make them addictive. Apparently one of the big innovations here was the idea of ‘virtual reel mapping’. Old-style mechanical fruit machines would have three actual reels with images on them that you needed to match up, and just looking at the machine would give you a rough indication of the total number of images on the reel, and therefore the rough odds of matching them up and winning.

Early computerised machines followed this pattern, but soon the machine designers realised that there no longer needed to be this close coupling between the machine’s internal representation and what the gambler sees. So the newer machines would have a much larger number of virtual reel positions that are mostly mapped to losing combinations, with a large percentage of these combinations being ‘near misses’ to make the machine more addictive. The machine still looks simple, like the toddler’s toy, but the intuitive sense of odds you get from watching the machine becomes completely useless, because the internal logic of the machine is now doing something very complicated that the screen actively hides from you. A machine like this is actively ‘out to get you’, alienating you from the evidence of your own eyes.

Apples and sheep

Before reading the book I’d never really thought carefully about any of these properties of objects. For a while after reading it, I noticed them everywhere. Here’s one (kind of silly) example.

Shortly after reading the book I was visiting my family, and came across this wooden puzzle my aunt made:


I had a phase when I was ten or so where I was completely obsessed with this puzzle. Looking back, it’s not obvious why. It’s pretty simple and looks like the kind of thing that would briefly entertain much younger children. I was a weird kid and also didn’t have a PlayStation – maybe that’s explanation enough? But I didn’t have some kind of Victorian childhood where I was happy with an orange and a wooden toy at Christmas. I had access to plenty of plastic and electronic nineties tat that was more obviously fun.

I sat down for half an hour to play with this thing and try and remember what the appeal was. The main thing is that it turns out to be way more controllable than you might expect. The basic aim of the puzzle is just to get the ball bearings in the holes in any old order. This is the game that stops being particularly rewarding once you’re over the age of seven. But it’s actually possible to learn to isolate individual ball bearings by bashing them against the sides until one separates off, and then tilt the thing very precisely to steer one individually into a specific hole. That gives you a lot more options for variants on the basic game. For example, you can fill in the holes in a spiral pattern starting from the middle. Or construct a ‘fence’ of outer apples with a single missing ‘gate’ apple, steer two apples into the central pen (these apples are now sheep), and then close the gate with the last one.

The other interesting feature is that because this is a homemade game, the holes are not uniformly deep. The one in the top right is noticeably shallower than the others, and the ball bearing in this slot can be dislodged fairly easily while keeping the other nine in their place. This gives the potential for quite complicated dynamics of knocking down specific apples, and then steering other ones back in.

Still an odd way to have spent my time! But I can at least roughly understand why. The apple puzzle is less like the Leap Frog Learning Table than you might expect, and so the game can reward a surprisingly high level of skill. Part of this is from the continuous degrees of freedom you have in tilting the board, but the cool thing is that a lot of it comes from unintentional parts of the physical design. My aunt made the basic puzzle for small children, and the more complicated puzzles happened to be hidden within it.

The ability to dislodge the top right apple is not ‘supposed’ to be part of the game at all – an abstract version you might code up would have identical holes. But the world is going about its usual business of being incorrigibly plural, and there is just way more of it than any one abstract ruleset needs. The variation in the holes allows some of that complexity to accidentally leak in, breaking the simple game out into a much richer one.

Pebbles and birdsong

Now for the criticism part. I think there’s a real deficiency in the book that goes deeper than the tone issues I pointed out at the start. Crawford is insightful in his discussions of the kind of complexity that many handcrafted objects exhibit, that’s often standardised away in the modern world. But in his enthusiasm for people doing real things with real tools he’s forgotten the advantages of the systematised, ‘autistic’ world he dislikes. Funnelling messy reality into repeatable categories is how we get shit done at scale. It’s not just some unpleasant feature of modernity, either. Even something as simple as counting with pebbles relies on this:

To make the method work, you must choose bits-of-rock of roughly even sizes, so you can distinguish them from littler bits—stray grains of sand or dust in the bucket—that don’t count. How even? Even enough that you can make a reliable-enough judgement.

The counting procedure abstracts away the vivid specificity of the individual pebbles, and reduces them to simplistic interchangeable tokens. But there’s not much point in complaining about this. You need to do this to get the job done! And you can always break them back out into individuality later on if you want to do something else, like paint a still life of them.

I’m finding myself going back yet again to Christopher Norris’s talk on Derrida, which I discussed in my braindump here. (I’m going to repeat myself a bit in the next section. This was the most thought-provoking single thing I read last year, and I’m still working through the implications, so everything seems to lead back there at the moment.) Derrida picks apart some similar arguments by Rousseau, who was concerned with the bad side of systematisation in music:

One way of looking at Rousseau’s ideas about the melody/harmony dualism is to view them as the working-out of a tiff he was having with Rameau. Thus he says that the French music of his day is much too elaborate, ingenious, complex, ‘civilized’ in the bad (artificial) sense — it’s all clogged up with complicated contrapuntal lines, whereas the Italian music of the time is heartfelt, passionate, authentic, spontaneous, full of intense vocal gestures. It still has a singing line, it’s still intensely melodious, and it’s not yet encumbered with all those elaborate harmonies.

Crawford is advocating for something close to Rousseau’s pure romanticism. He brings along more recent and sophisticated arguments from phenomenology and embodied cognition, but he’s still very much on the side of spontaneity over structure. And I think he’s still vulnerable to the same arguments that Derrida was able to use against Rousseau. Norris explains it as follows:

… Rousseau gets into a real argumentative pickle when he say – lays it down as a matter of self-evident truth – that all music is human music. Bird-song just doesn’t count, he says, since it is merely an expression of animal need – of instinctual need entirely devoid of expressive or passional desire – and is hence not to be considered ‘musical’ in the proper sense of that term. Yet you would think that, given his preference for nature above culture, melody above harmony, authentic (spontaneous) above artificial (‘civilized’) modes of expression, and so forth, Rousseau should be compelled – by the logic of his own argument – to accord bird-song a privileged place vis-à-vis the decadent productions of human musical culture. However Rousseau just lays it down in a stipulative way that bird-song is not music and that only human beings are capable of producing music. And so it turns out, contrary to Rousseau’s express argumentative intent, that the supplement has somehow to be thought of as always already there at the origin, just as harmony is always already implicit in melody, and writing – or the possibility of writing – always already implicit in the nature of spoken language.

Derrida is pointing out that human music always has a structured component. We don’t just pour out a unmarked torrent of frequencies. We define repeatable lengths of notes, and precise intervals between pitches. (The evolution of these is a complicated engineering story in itself.) This doesn’t make music ‘inauthentic’ or ‘artificial’ in itself. It’s a necessary feature of anything we’d define as music.

I’d have been much happier with the book if it had some understanding of this interaction – ‘yes, structure is important, but I think we have too much of it, and here’s why’. But all we get is the romantic side. As with Rousseau’s romanticism, this tips over all too easily into pure reactionary nostalgia for an imagined golden age, and then we have to listen to yet another anecdote about how everything in the modern world is terrible. It’s not the eighteenth century any more, and we can do better now. And for all its genuine insight, this book mostly just doesn’t.

Book Review: The Eureka Factor

Last month I finally got round to reading The Eureka Factor by John Kounios and Mark Beeman, a popular book summarising research on ‘insightful’ thinking. I first mentioned it a couple of years ago after I’d read a short summary article, when I realised it was directly relevant to my recurring ‘two types of mathematician’ obsession:

The book is not focussed on maths – it’s a general interest book about problem solving and creativity in any domain. But it looks like it has a very similar way of splitting problem solvers into two groups, ‘insightfuls’ and ‘analysts’. ‘Analysts’ follow a linear, methodical approach to work through a problem step by step. Importantly, they also have cognitive access to those steps – if they’re asked what they did to solve the problem, they can reconstruct the argument.

‘Insightfuls’ have no such access to the way they solved the problem. Instead, a solution just ‘pops into their heads’.

Of course, nobody is really a pure ‘insightful’ or ‘analyst’. And most significant problems demand a mixed strategy. But it does seem like many people have a tendency towards one or the other.

I wasn’t too sure what I was getting into. The replication crisis has made me hyperaware of the dangers of uncritically accepting any results in psychology, and I’m way too ignorant of the field to have a good sense for which results still look plausible. However, the book turned out to be so extraordinarily Relevant To My Interests that I couldn’t resist writing up a review anyway.

The final chapters had a few examples along the lines of ‘[weak environmental effect] primes people to be more/less insightful’, and I know enough to stay away from those, but the earlier parts look somewhat more solid to me. I haven’t made much effort to trace back references, though, and I could easily still be being too credulous.

(I didn’t worry so much about replication with my previous post on the Cognitive Reflection Test. Getting the bat and ball question wrong is hardly the kind of weak effect that you need a sensitive statistical instrument to detect. It’s almost impossible to stop people getting it wrong! I did steer clear of any more dubious priming-style results, though, like the claim that people do better on the CRT when reading it ‘in a disfluent font’.)

Insight and intuition

First, it’s worth getting clear on exactly what Kounios and Beeman mean by ‘insight’. As they use it, insight is a specific type of creative thinking, which they define more generally as ‘the ability to reinterpret something by breaking it down into its elements and recombining these elements in a surprising way to achieve some goal.’ Insight is distinguished by its suddenness and lack of conscious control:

When this kind of creative recombination takes place in an instant, it’s an insight. But recombination can also result from the more gradual, conscious process that cognitive psychologists call “analytic” thought. This involves methodically and deliberately considering many possibilities until you find the solution. For example, when you’re playing a game of Scrabble, you must construct words from sets of letters. When you look at the set of letters “A-E-H-I-P-N-Y-P” and suddenly realize that they can form the word “EPIPHANY,” then that would be an insight. When you systematically try out different combinations of the letters until you find the word, that’s analysis.

Insights tend to have a few other features in common. Solving a problem by insight is normally very satisfying: the insight comes into consciousness along with a small jolt of positive affect. The insight itself is usually preceded by a longer period of more effortful thought about the problem. Sometimes this takes place just before the moment of insight, while at other times there is an ‘incubation’ phase, where the solution pops into your head while you’ve taken a break from deliberately thinking about it.

I’m not really going to get into this part in my review, but the related word ‘intuition’ is also used in an interestingly specific sense in the book, to describe the sense that a new idea is lurking beneath the surface, but is not consciously accessible yet. Intuitions often precede an insight, but have a different feel to the insight itself:

This puzzling phenomenon has a strange subjective quality. It feels like an idea is about to burst into your consciousness, almost as though you’re about to sneeze. Cognitive psychologists call this experience “intuition,” meaning an awareness of the presence of information in the unconscious mind — a new idea, solution, or perspective — without awareness of the information itself, at least until it pops into consciousness.

Insight problems

To study insight, psychologists need to come up with problems that reliably trigger an insight solution. One classic example discussed in The Eureka Factor is the Nine Dot Problem, where you are asked to connect the following set of black dots using only four lines, without taking your pen off the page:

[image source]
If you’ve somehow avoided seeing this puzzle before, think about it for a while first. In the absence of any kind of built-in spoiler blocks for sites, I’ll insert a bunch of blank space here so that you hopefully have to scroll down off your current screen to see my discussion of the solution:

If you didn’t figure it out, a solution can be found in the Wikipedia article on insight problems here. It’ll probably look irritatingly obvious once you see it. The key feature of the solution is that the lines you draw have to extend outside the confines of the square of dots you start with (thus spawning a whole subgenre of annoying business literature on ‘thinking outside the box’). Nothing in the rules forbids this, but the setup focusses most people’s attention on the grid itself, and breaking out of this mindset requires a kind of reframing, a throwing away of artificially imposed constraints. This is a common characteristic of insight problems.

This characteristic also makes insight hard to test. For testing purposes, it’s useful to have a large stock of similar puzzles in hand. But a good reframing like the one in the Nine Dot Problem tends to be a bit of a one-off: once you’ve had the idea of extending the lines outside the box, it applies trivially to all similar puzzles, and not at all to other types of puzzle.

(I talked about something similar in my last post, on the Cognitive Reflection Test. The test was inspired by one good puzzle, the ‘bat and ball problem’, and adds two other questions that were apparently picked to be similar. Five thousand words and many comments later, it’s not obvious to me or most of the other commenters that these three problems form any kind of natural set at all.)

Kounios and Beeman discuss several of these eyecatching ‘one-off’ problems in the book, but their own research that they discuss is focussed on a more standardisable kind of puzzle, the Remote Associates Test. This test gives you three words, such as


and asks you to find the common word that links them. The authors claim that these can be solved either with or without insight, and asked participants to self-categorise their responses as either fitting in the ‘insightful’ or ‘analytic’ categories:

The analytic approach is to consciously search through the possibilities and try out potential answers. For example, start with “pine.” Imagine yourself thinking: What goes with “pine”? Perhaps “tree”? “Pine tree” works. “Crab tree”? Hmmm … maybe. “Tree sauce”? No. Have to try something else. How about “cake”? “Crab cake” works. “Cake sauce” is a bit of a reach but might be acceptable. However, “pine cake” and “cake pine” definitely don’t work. What else? How about “crabgrass”? That works. But “pine grass”? Not sure. Perhaps there is such a thing. But “sauce grass” and “grass sauce” are definitely out. What else goes with “sauce”? How about “applesauce”? That’s good. “Pineapple” and “crab apple” also work. The answer is “apple”!

This is analytical thought: a deliberate, methodical, conscious search through the possible combinations. But this isn’t the only way to come up with the solution. Perhaps you’re trying out possibilities and get stuck or even draw a blank. And then, “Aha! Apple” suddenly pops into your awareness. That’s what would happen if you solved the problem by insight. The solution just occurs to you and doesn’t seem to be a direct product of your ongoing stream of thought.

This categorisation seems suspiciously neat, and if I rely on my own introspection for solving one of these (which is obviously dubious itself) it feels like more of a mix. I’ll often generate some verbal noise about cakes and trees that sounds vaguely like I’m doing something systematic, but the main business of solving the thing seems to be going on nonverbally elsewhere. But I do think there’s something there – the answer can be very immediate and ‘poppy’, or it can surface after a longer and more accessible process of trying plausible words. This was tested in a more objective way by seeing what people do when they don’t come up with the answer:

Insightfuls made more “errors of omission.” When waiting for an insight that hadn’t yet arrived, they had nothing to offer in its place. So when the insight didn’t arrive in time, they let the clock run out without having made a guess. In contrast, Analysts made more “errors of commission.” They rarely timed out, but instead guessed – sometimes correctly – by offering the potential solution they had been consciously thinking about when their time was almost up.

Kounios and Beeman’s research focussed on finding neural correlates of the ‘aha’ moment of insight, using a combination of an EEG test to pinpoint the time of the insight, and fMRI scanning to locate the brain region:

We found that at the moment a solution pops into someone’s awareness as an insight, a sudden burst of high-frequency EEG activity known as “gamma waves” can be picked up by electrodes just above the right ear. (Gamma waves represent cognitive processing in the brain, such as paying attention to something or linking together different pieces of information.) We were amazed at the abruptness of this burst of activity—just what one would expect from a sudden insight. Functional magnetic resonance imaging showed a corresponding increase in blood flow under these electrodes in a part of the brain’s right temporal lobe called the “anterior superior temporal gyrus” (see figure 5.2), an area that is involved in making connections between distantly related ideas, as in jokes and metaphors. This activity was absent for analytic solutions.

So we had found a neural signature of the aha moment: a burst of activity in the brain’s right hemisphere.

I’m not sure how settled this is, though. I haven’t tried to do a proper search of the literature, but certainly a review from 2010 describes the situation as very much in flux:

A recent surge of interest into the neural underpinnings of creative behavior has produced a banquet of data that is tantalizing but, considered as a whole, deeply self-contradictory.

(The book was published somewhat later, in 2015, but mostly cites research from prior to this review, such as this paper.)

As an outsider it’s going to be pretty hard for me to judge this without spending a lot more time than I really want to right now. However, regardless of how this holds up, I was really interested in the authors’ discussion of why a right-hemisphere neural correlate of insight would make sense.

Insight and context

One of the authors, Mark Beeman, had previously studied language deficits in people who had suffered brain damage to the right hemisphere. One such patient was the trial attorney D.B.:

What made D.B. “lucky” was that the stroke had damaged his right hemisphere rather than his left. Had the stroke occurred in the mirror-image left-hemisphere region, he would have experienced Wernicke’s aphasia, a profound deficit of language comprehension. In the worst cases, people with Wernicke’s aphasia may be completely unable to understand written or spoken language.

Nevertheless, D.B. didn’t feel lucky. He may have been better off than if he’d had a left-hemisphere stroke, but he felt that his language ability was far from normal. He said that he “couldn’t keep up” with conversations or stories the way he used to. He felt impaired enough that he had stopped litigating trials—he thought that it would have been a disservice to his clients to continue to represent them in court.

D.B. and the other patients were able to understand the straightforward meanings of words and the literal meanings of sentences. Even so, they complained about vague difficulties with language. They failed to grasp the gist of stories or were unable to follow multiple-character or multiple-plot stories, movies, or television shows. Many didn’t get jokes. Sarcasm and irony left them blank with incomprehension. They could sometimes muddle along without these abilities, but whenever things became subtle or implicit, they were lost.

An example of the kind of problem D.B. struggled with is the following:

Saturday, Joan went to the park by the lake. She was walking barefoot in the shallow water, not knowing that there was glass nearby. Suddenly, she grabbed her foot in pain and called for help, and the lifeguard came running.

If D.B. was given a statement about something that occurred explicitly in the text, such as ‘Joan went to the park on Saturday’, he could say whether it was true or false with no problems at all. In fact, he did better than all of the control subjects on these sorts of explicit questions. But if he was instead presented with a statement like ‘Joan cut her foot’, where some of the facts are left implicit, he was unable to answer.

This was interesting to me, because it seems so directly relevant to the discussion last year on ‘cognitive decoupling’. This is a term I’d picked up from Sarah Constantin, who herself got it from Keith Stanovich:

Stanovich talks about “cognitive decoupling”, the ability to block out context and experiential knowledge and just follow formal rules, as a main component of both performance on intelligence tests and performance on the cognitive bias tests that correlate with intelligence. Cognitive decoupling is the opposite of holistic thinking. It’s the ability to separate, to view things in the abstract, to play devil’s advocate.

The patients in Beeman’s study have so much difficulty with contextualisation that they struggle with anything at all that is left implicit, even straightforward inferences like ‘Joan cut her foot’. This appears to match with other evidence from visual half-field studies, where subjects are presented with words on either the right or left half of the visual field. Those on the left half will go first to the right hemisphere, so that the right hemisphere gets a head start on interpreting the stimulus. This shows a similar difference between hemispheres:

The left hemisphere is sharp, focused, and discriminating. When a word is presented to the left hemisphere, the meaning of that word is activated along with the meanings of a few closely related words. For example, when the word “table” is presented to the left hemisphere, this might strongly energize the concepts “chair” and “kitchen,” the usual suspects, so to speak. In contrast, the right hemisphere is broad, fuzzy, and promiscuously inclusive. When “table” is presented to the right hemisphere, a larger number of remotely related words are weakly invoked. For example, “table” might activate distant associations such as “water” (for underground water table), “payment” (for paying under the table), “number” (for a table of numbers), and so forth.

Why would picking up on these weak associations be relevant to insight? The story seems to be that this tangle of secondary meanings – the ‘Lovecraftian penumbra of monstrous shadow phalanges’ – works to pull your attention away from the obvious interpretation you’re stuck with, helping you to find a clever new reframing of the problem.

This makes a lot of sense to me as a rough outline. In my own experience at least, the kind of thinking that is likely to lead to an insight experience feels softer and more diffuse than the more ‘analytic’ kind, more a process of sort of rolling the ideas around gently in your head and seeing if something clicks than a really focussed investigation of the problem. ‘Thinking too hard’ tends to break the spell. This fits well with the idea that insights are triggered by activation of weak associations.

Final thoughts

There’s a lot of other interesting material in the book about the rest of the insight process, including the incubation period leading up to an insight flash, and the phenomenon of ‘intuitions’, where you feel that an insight is on its way but you don’t know what it is yet. I’ll never get through this review if I try to cover all of that, so instead I’m going to finish up with a couple of weak associations of my own that got activated while reading the book.

I’ve been getting increasingly dissatisfied with the way dual process theories split cognition into a fast/automatic/intuitive ‘System 1’ and a slow/effortful/systematic ‘System 2’. System 1 in particular has started to look to me like an amorphous grab bag of all kinds of things that would be better separated out.

The Eureka Factor has pushed this a little further, by bringing out a distinction between two things that normally get lumped under System 1 but are actually very different. One obvious type of System 1-ish behaviour is routine action, the way you go about tasks you have done many times before, like making a sandwich or walking to work. These kinds of activities require very little explicit thought and generally ‘just happen’ in response to cues in the environment.

The kind of ‘insightful’ thinking discussed in The Eureka Factor would also normally get classed under System 1: it’s not very systematic and involves a fast, opaque process where the answer just pops into your head without much explanation. But it’s also very different to routine action. It involves deliberately choosing to think about a new situation, rather than one you have seen many times before, and a successful insight gives you a qualitatively new kind of understanding. The insight flash itself is a very noticeable, enjoyable feature of your conscious attention, rather than the effortless, unexamined state of absorbed action.

This was pointed out to me once before by Sarah Constantin, in the comments section of her Distinctions in Types of Thought:

You seem to be lumping “flashes of insight” in with “effortless flow-state”. I don’t think they’re the same. For one thing, inspiration generally comes in bursts, while flow-states can persist for a while (driving on a highway, playing the piano, etc.) Definitely, “flashes of insight” aren’t the same type of thought as “effortful attention” — insight feels easy, instant, and unforced. But they might be their own, unique category of thought. Still working out my ontology here.

I’d sort of had this at the back of my head since then, but the book has really brought out the distinction clearly. I’m sure these aren’t the only types of thinking getting shoved into the System 1 category, and I get the sense that there’s a lot more splitting out that I need to do.

I also thought about how the results in the book fit in with my perennial ‘two types of mathematician’ question. (This is a weird phenomenon I’ve noticed where a lot of mathematicians have written essays about how mathematicians can be divided into two groups; I’ve assembled a list of examples here.) ‘Analytic’ versus ‘insightful’ seems to be one of the distinctions between groups, at least. It seems relevant to Poincaré’s version, for instance:

The one sort are above all preoccupied with logic; to read their works, one is tempted to believe they have advanced only step by step, after the manner of a Vauban who pushes on his trenches against the place besieged, leaving nothing to chance.

The other sort are guided by intuition and at the first stroke make quick but sometimes precarious conquests, like bold cavalrymen of the advance guard.

In fact, Poincaré once also gave a striking description of an insight flash himself:

Just at this time, I left Caen, where I was living, to go on a geologic excursion under the auspices of the School of Mines. The incidents of the travel made me forget my mathematical work. Having reached Coutances, we entered an omnibus to go some place or other. At the moment when I put my foot on the step, the idea came to me, without anything in my former thoughts seeming to have paved the way for it, that the transformations I had used to define the Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify the idea; I should not have had time, as, upon taking my seat in the omnibus, I went on with a conversation already commenced, but I felt a perfect certainty. On my return to Caen, for conscience’ sake, I verified the result at my leisure.

If the insight/analysis split is going to be relevant here, it would require that people favour either ‘analytic’ or ‘insight’ solutions as a general cognitive style, rather than switching between them freely depending on the problem. The authors do indeed claim that this is the case:

Most people can, and to some extent do, use both of these approaches. A pure type probably doesn’t exist; each person falls somewhere on an analytic-insightful continuum. Yet many—perhaps most—people tend to gravitate toward one of these styles, finding their particular approach to be more comfortable or natural.

This is based on their own research where they recorded participant’s self-report of whether they were using a ‘insight’ or ‘analytic’ approach to solve anagrams, and compared it with EEG recordings of their resting state. They found a number of differences, including more right-hemisphere activity in the ‘insight’ group, and lower levels of communication between the frontal lobe and other parts of the brain, indicating a more disorderly thinking style with less top-down control. This may suggest more freedom to allow weak associations between thoughts to have a crack at the problem, without being overruled by the dominant interpretation.

Again, and you’re probably got very bored of this disclaimer, I have no idea how well the details of this will hold up. That’s true for pretty much every specific detail in the book that I’ve discussed here. Still, the link between insight and weak associations makes a lot of sense to me, and the overall picture certainly triggered some useful reframings. That seems very appropriate for a book about insight.

Book Review: The Reflective Practitioner

In my last two posts I’ve been talking about my experience of thinking through some website design problems. At the same time that I was muddling along with these, I happened to be reading Donald Schön’s The Reflective Practitioner, which is about how people solve problems in professions like architecture, town planning, teaching and management. (I got the recommendation from David Chapman’s ‘Further reading’ list for his Meaningness site.)

This turned out to be surprisingly relevant. Schön is considering ‘real’ professional work, rather than my sort of amateur blundering around, but the domain of web design shares a lot of characteristics with the professions he studied. The problems in these fields are context-dependent and open-ended, resisting any sort of precise theory that applies to all cases. On the other hand, people do manage to solve problems and develop expertise anyway.

Schön argues that this expertise mostly comes through building up familiarity with many individual examples, rather than through application of an overarching theory. He builds up his own argument in the same way, letting his ideas shine through a series of case studies of successful practitioners.

In the one I find most compelling, an established architect, Quist, reviews the work of a student, Petra, who is in the early stages of figuring out a design for an elementary school site. I’m going to follow Schön’s examples-driven approach here and describe this in some detail.

Petra has already made some preliminary sketches and come up with some discoveries of her own. Her first idea for the classrooms was the diagonal line of six rooms in the top right of the picture below. Playing around, she found that ‘they were too small in scale to do much with’, so she ‘changed them to this much more significant layout’, the L shapes in the bottom left.


I’m not sure I can fully explain why the L shapes are ‘more significant’, but I do agree with her assessment. There’s more of a feeling of spaciousness than there was with the six cramped little rectangles, and the pattern is more interesting geometrically and suggests more possibilities for interacting with the geography of the site.

At this point, we already get to see a theme that Schön goes back to repeatedly, the idea of a ‘reflective conversation with the materials’. The designer finds that:

His materials are continually talking back to him, causing him to apprehend unanticipated problems and potentials.

Petra has found a simple example of this. She switched to the L shapes on more-or-less aesthetic grounds, but then she discovers that the new plan ‘relates one to two, three to four, and five to six grades, which is more what I wanted to do educationally anyway.’ The materials have talked back and given her more than she originally put in, which is a sign that she is on to something promising.

After this early success, Petra runs into difficulties. She has learnt the rule that buildings should fit to the contours of the site. Unfortunately the topography of this particular site is really incoherent and nothing she tries will fit into the slope.

Quist advises her to break this rule:

You should begin with a discipline, even if it is arbitrary, because the site is so screwy – you can always break it open later.

Together they work through the implications of the following design:


This kicks off a new round of conversation with the materials.

Quist now proceeds to play out the imposition of the two-dimensional geometry of the L-shaped classrooms upon the “screwy” three-dimensional contours of the slope… The roofs of the classroom will rise five feet above the ground at the next level up, and since five feet is “maximum height for a kid”, kids will be able to be in “nooks”…

A drawing experiment has been conducted and its outcome partially confirms Quist’s way of setting the L-shaped classrooms upon the incoherent slope. Classrooms now flow down the slope in three stages, creating protected spaces “maximum height for a kid” at each level.

In an echo of Petra’s initial experiment, Quist has got back more than he put in. He hasn’t solved the problem in the clean, definitive way you’d solve a mathematical optimisation problem. Many other designs would probably have worked just as well. But the design has ‘talked back’, and his previous experience of working through problems like this has given him the skills to understand what it is saying.

I find the ‘reflective conversation’ idea quite thought-provoking and appealing. It seems to fit well with my limited experience: prototyping my design in a visual environment was an immediate improvement over just writing code, because it enabled this sort of conversation. Instead of planning everything out in advance, I could mess around with the basic elements of the design and ‘apprehend unanticipated problems and potentials’ as they came up.

I don’t find the other examples in the book quite as convincing as this one. Quist is unusually articulate, so the transcripts tell you a lot. Also, architectural plans can be reproduced easily as figures in a book, so you can directly see his solution for yourself, rather than having to take someone’s word for it. With the other practitioners it’s often hard to get a sense of how good their solutions are. (I guess Schön was also somewhat limited by who he could persuade to be involved.)

Alongside the case studies, there is some discussion of the implications for how these professions are normally taught. Some of this is pretty dry, but there are a few interesting topics. The professions he considers often have something like ‘engineering envy’ or ‘medicine envy’: doctors and engineers can borrow from the hard sciences and get definitive answers to some of their questions, so they don’t always have to do this more nebulous ‘reflective conversation’ thing.

It’s tempting for experts in the ‘softer’ professions to try and borrow some of this prestige, leading to the introduction of a lot of theory into the curriculum, even if this theory turns out to be pretty bullshit-heavy and less useful than the kind of detailed reflection on individual cases that Quist is doing. Schön advocates for the reintroduction of practice, pointing out that this can never be fully separated from theory anyway:

If we separate thinking from doing, seeing thought only as a preparation for action and action only as an implementation of thought, then it is easy to believe that when we step into the separate domain of thought we will become lost in an infinite regress of thinking about thinking. But in actual reflection-in-action, as we have seen, doing and thinking are complementary. Doing extends thinking in the tests, moves, and probes of experimental action, and reflection feeds on doing and its results. Each feeds the other, and each sets boundaries for the other. It is the surprising result of action that triggers reflection, and it is the production of a satisfactory move that brings reflection temporarily to a close… Continuity of enquiry entails a continual interweaving of thinking and doing.

For some reason this book has become really popular with education departments, even though teaching only makes up a tiny part of the book. Googling ‘reflective practitioner’ brings up lots of education material, most of which looks cargo-culty and uninspired. Schön’s ideas seem to have mostly been routinised into exactly the kind of useless theory he was trying to go beyond, and I haven’t yet found any good follow-ups in the spirit of the original. It’s a shame, as there’s a lot more to explore here.